Авторизация


...

Кто на сайте?

Сейчас 36 гостей и ни одного зарегистрированного пользователя на сайте

Статистика

-Посетители : 25286
-Материалы : 210

Пользователь сайта продает...

  pic12f683

Пользователь сайта покупает...

Доработка строительного фена

Автор: Super User Просмотров: 38542

 

 

 

Потом были еще, какие то применения, и в один прекрасный момент было замечено, плохое включение на повышенной мощности.

 Быстренько раскидав его на запчасти, убедился, что причина в переключателе, (плохой контакт клемм сделал свое дело). 

 

alt

 

 

 

Замена переключателя не была проблемой, проблема была в другом. Перед глазами лежала «заготовка», которую можно было модернизировать под свои запросы.

  1. Чтобы была возможность применять насадки, необходима стабилизация температуры.
  2. Для применения в монтаже радиодеталей, необходимо менять силу воздушного потока.
  3. Чтобы сложить фен в коробку, он должен остыть. То есть, должна быть возможность отключения нагрева спирали, без выключения вентилятора.
  4. В свою очередь работа одного вентилятора, дает возможность использования фена для охлаждения чего-либо, и т.д.

Собственно, все выше изложенное и было внедрено в корпус самого дешевого фена. 

 

 

alt

Включение питания фена.

После включения питания, устанавливается режим охлаждения:

  • Нагрев спирали отключен.
  • Вентилятор работает на первом положении скорости.
  • Установлен нижний предел уставки температуры воздушного потока.
  • На семисегментном индикаторе высвечивается температура воздушного потока.
  • Светодиод «температура», показывает выше или ниже уставки, температура воздушного потока. Если температура выше уставки,- светит зеленый. Если ниже,- красный. 

?

Установка температуры воздушного потока.

Температура воздушного потока, устанавливается при помощи кнопок +/-.

 

alt

 

 

Минимальная уставка 60*С, максимальная 630*С.

Изменение температуры происходит с шагом 10 градусов.

Первое, кратковременное нажатие на кнопки изменения температуры, включает меню уставки температуры. Последующие кратковременные нажатия кнопок +/-, будут изменять уставку температуры с дискретностью 10 градусов. В случае удержания кнопки, больше одной сек., включается ускоренная прокрутка значений уставки.

Если кнопки не нажимались более одной секунды, происходит автоматический возврат в меню индикации температуры воздушного потока.  

Изменение скорости воздушного потока.

Изменение скорости производится при помощи кнопок +/-, и имеет семь градаций. При удержании кнопки более одной секуны, включается ускоренная «прокрутка».

Индикатор скорости представляет из себя линейку светодиодов. 

Количество светящихся светодиодов, пропорционально скорости воздушного потока.

 

alt

Включение нагрева спирали.

Включение нагрева, производится при помощи кнопки «нагрев». 

Каждое нажатие кнопки, будет включать или отключать нагрев спирали.

Свечение красного светодиода показывает, что нагрев спирали, включен.

Отсутствие свечения,- нагрев отключен.

alt

Конструкция и детали.

Вся конструкция регулятора температуры и скорости воздушного потока, собрана на двух платах. 

 

alt

На первой:

  • Импульсный блок питания. На выходе имеет +16В для питания мотора вентилятора,    и два по +5В, для питания цифровой и аналоговой частей регулятора.
  • Симисторный регулятор, мощности нагрева спирали фена. Используется метод пропуска периодов сетевого напряжения, с равномерным распределением во времени.
  • Силовой ключ, ШИМ регулятора оборотов мотора вентилятора. Используется аппаратный ШИМ микроконтроллера, частотой 30кГц.

?

?alt

На второй: 

  • Блок управления и индикации. Включает в себя, пять кнопок управления, один трехразрядный семисегментный индикатор измеренной температуры воздушного потока, и ее уставки. Десять светодиодов, из них семь,- линейка индикации скорости воздушного потока. Два,- индикатор состояния температуры (выше, ниже уставки). Один,- индикатор включения нагрева спирали.
  • Усилитель термопары, и МК. 

?

?alt

 

Обе платы выполнены по методу лазерно-утюжной технологии. Первая плата с односторонним монтажом радиодеталей, крепится пайкой, на клеммах мотора вентилятора. Вторая, с двухсторонним монтажом, крепление при помощи четырех саморезов к крышке корпуса фена. Она же является лицевой панелью модуля управления.

 

Электрическая схема.

Вся схема разбита на семь функциональных узлов:

  1. Импульсный блок питания.
  2. Блок управления нагревом спирали.
  3. Блок усилителя термопары.
  4. Нагревательный элемент и термопара.
  5. Блок управления двигателем вентилятора.
  6. Микроконтроллер.
  7. Модуль ввода-вывода.

?alt

Импульсный блок питания.

Блок питания собран на микросхеме TOP224, по оригинальной схеме http://www.premiermag.com/pdf/pol-12017.pdf

 

alt

 

 

Блок питания обеспечивает схему тремя напряжениями:

16v - для питания мотора вентилятора, максимальный ток 1А.

5vc - для питания цифровой части схемы, ток до 0,5А.

5v  - для питания аналоговой части схемы, ток до 0,05А.

Узлы самостоятельного изготовления, дроссель L1 и  трансформатор TV1. Дроссель намотан на каркасе «катушка», и должен иметь индуктивность до 10мкГн, а также иметь возможность пропускать соответствующий ток 1,5А.

Трансформатор взят с 20ватной энергосберегайки. Центральная часть сердечника 5х5мм. Число витков первичной обмотки подбиралось по «калькулятору лысого». И в моем случае составила 72 витка. Моталось проводом диаметром 0,23мм.  Вторичная обмотка имеет 8 витков сложенных в четверо, того-же провода 0,23мм. Обмотка обратной связи имеет 7 витков, так же сложенного в четверо провода. При максимальной нагрузке, когда вентилятор питается от полного напряжения 16В, начинает нагреваться трансформатор и микросхема TOP224. Однако, в виду пропорционального увеличения охлаждения, (потока воздуха), температура не превышала 45*С, при окружающей температуре 32*С. Измерения проводились инфракрасным термометром DT8220, кстати, очень удобным в этом отношении.

Конечно же, перед самостоятельным изготовлением таких трансформаторов желательно проштудировать соответствующую литературу. Т.к. многие моменты, сборки и намотки трансформатора здесь не рассматриваются.

Блок управления нагревом спирали.

Схема управления нагревом спирали, построена на симисторе BTA41-600. 

Взята из даташита на MOC3063, и особенностей не имеет. Оптрон с детектором нуля сетевого напряжения, обеспечивает «тихое управление нагрузкой». Но в виду того, что нагрузка порядка двух киловатт, то лампа накаливания, включенная в ту же розетку, будет «показывать» работу ПИ регулятора (попросту будет слегка помаргивать). 

 

alt

 

 

Блок усилителя термопары.

Схема усилителя термопары собрана на операционном усилителе AD8551. 

 

alt

 

 

На этот раз схема включения взята не из даташита, но довольно стандартна. Задача усилителя, усилить ЭДС термопары, по этому емкость ООС С10, имеет большое значение при фильтрации импульсных помех. Фильтр нижних частот на выходе U4, подавляет 50герцовую составляющую выходного сигнала. Коэффициент усиления подбирается при помощи резистора R24 (грубо).  Более точное вычисление происходит уже программно.

Нагревательный элемент и термопара.

Конструкция нагревательного элемента, претерпела легкое изменение. Была удалена спираль питания двигателя вентилятора. И вставлена термопара.

 

alt

 

 

На фото девственное состояние нагревателя, состояние после переделки, к сожалению не увековечилось. Но там ничего сложного нет. Белые провода, идущие на питание мотора, - удаляются в месте со своей спиралью. Термопредохранитель подключается при помощи обжимки (не пайки), к противоположному концу спирали имеющей сопротивление 33 Ома.  Черный провод дополнительной спирали, просто откусывается, а конец спирали остается в керамике. Красный провод остается нетронутым.

 

alt

 

Термопара пропускается через освободившийся канал, где раньше был термопредохранитель. Конец термопары с холодным спаем подключается к плате при помощи винтов. Холодный спай спрятан под красной термоусадочной трубкой. Температура холодного спая контролируется внутренним термометром МК. И на практике имеет не большую разницу, (1-2*С).

Блок управления двигателем вентилятора.

Управление воздушным потоком происходит за счет изменения оборотов двигателя вентилятора. Обороты в свою очередь зависят от питающего напряжения. Одним из простых способов управления является ШИМ (широтно-импульсная модуляция). 

 

alt

 

 

Аппаратный ШИМ обеспечивает МК. Частота выбрана 30кГц, что дает возможность обойтись без драйвера управления ключом. В качестве ключа, использован интеллектуальный транзистор  BTS113A. И может быть заменен полевым транзистором с «логическим входом».

 

Микроконтроллер.

В схеме использован МК PIC16F1823, это четырнадцативыводный камень. Тактовая частота 30МГц, что позволяет довольно шустро, обрабатывать поступающую информацию.  Выводы RA0, RA1, RA3, не используются, оставлены на развитие (если будет).

 

alt

 

 

Модуль ввода-вывода.

В виду малого количества выводов у МК, и большого количества элементов индикации и ввода (кнопок), было решено использовать сдвиговой регистр 74HC164.

 

alt

 

Транзисторы VT1-VT4 выпаяны из какой то платы, и по обозначению на корпусе подходят под BC817 или BC337, в корпусе SOT23.

 

 

alt

 

 

Светодиоды LED1-LED10, так же в SMD исполнении, но могут быть заменены на 3мм, без значительного изменения печатной платы.

Вопросы задаем на форуме.

 

Ссылка для скачивания доступна только авторизованным пользователям сайта !

Ссылка для скачивания доступна только авторизованным пользователям сайта !

П.С. Эта статья представлена не столько для повторения, сколько для стимула к поиску новых подходов и решений, при создании своих любительских конструкций. 

 

 

Случайные статьи....

Prev Next

Особенности преобразования двоичного числа в двоично-десятичный код ме…

01-07-2011 Игорь Безверхний

Особенности преобразования двоичного числа в двоично-десятичный код методом левого сдвига

Двоично-десятичный код используется, как правило, в устройствах ввода-вывода для организации удобного для пользователя способа обмена информации с цифровым устройством, и в первую очередь, в узлах (модулях) индикации. Один весьма известный, в узком кругу, специалист написал в учебных целях статью с 42...

Умножение константы 0xFFFF на байт

19-05-2012 Александр Милевский

Умножение константы 0xFFFF на байт

Хочу популярно, на примере объяснить, что мне нравится в ассемблере. Это его гибкость и возможность подумать и сделать не стандартно именно под необходимую задачу. Сразу скажу, я ни в какой мере не осуждаю любителей языков высокого уровня. Это просто глупо, особенно при...

Что такое микроконтроллер?

21-04-2012 Super User

   Надеюсь, Вы не сильно утомились, читая про двоичную арифметику, логические операции и т.д., но что поделаешь? Без этого никуда. Дальше  переходим к рассмотрению следующей главы -микроконтроллеры …. Микроконтроллер – в первую очередь, это микросхема, да  и  на вид практически  ничем не...

Дополнительное программное обеспечение .

22-04-2011 Super User

Дополнительное программное обеспечение .

В начале этой главы рассмотрим отладку (проверку работоспособности конструкции) в специальной программе "Proteus", после этого кратко "пробежим"   те программы, которые наиболее популярны среди программистов и удобны в применении.  Наверно не стоит "загружать" голову полным описание ПО "Proteus", а рассмотрим...


Все права принадлежат ChipMK.ru. При копировании материала ссылка обязательна. 2011-2017 © ChipMK.ru

ChipMk.ru Яндекс.Метрика
PRCY.ru