Авторизация


...

Кто на сайте?

Сейчас 86 гостей и 6 зарегистрированных пользователей на сайте

  • inmiernikwesto
  • thamohmedsaman
  • viktor1370

Статистика

-Посетители : 21514
-Материалы : 206

Пользователь сайта продает...

  Стенд для освоения программирования МК AVR

Пользователь сайта покупает...

Простой усилитель термопары

Автор: Александр Милевский Просмотров: 29282

Основная схема.

image002

 

Основа усилителя взята из технического описания фирмы «Analog Devices» на операционный усилитель ОР213. Данный ОУ можно отнести к точным ОУ с малым тепловым дрейфом нуля

Сразу скажу, что на фирменной схеме допущена досадная ошибка. Точка соединения резисторов R8 и R6 должна быть исключена. Схема позволяет измерять температуру в диапазоне 0 – 1000 оС с точностью 0,02 оС при применение данного ОУ и термопары К-типа. Эта термопара обладает наиболее близкой к прямой термоэлектрической характеристикой. Термоэлектроды изготовлены из сплавов на никелевой основе. Хромель (НХ9,5) содержит 9...10 %Сг; 0,6...1,2 % Со; алюмель (НМцАК) — 1,6...2.4 % Al, 0.85...1,5 Si, 1,8...2,7 % Mn. 0.6...1.2 % Со. Алюмель светлее и слабо притягивается магнитом; этим он отличается от более темного в отожженном состоянии совершенно немагнитного хромеля. Благодаря высокому содержанию никеля хромель и алюмель лучше других неблагородных металлов по стойкости к окислению. Учитывая почти линейную зависимость термоЭДС термопары хромель — алюмель от температуры в диапазоне 0...1000°С, ее наиболее часто применяют в терморегуляторах.

Подключение электродов термопары к разъемам платы усилителя образует еще один источник термоЭДС (холодный спай) напряжение на котором вносит существенную ошибку в истинные показания. Для устранения этой погрешности применяют разные методы. В данном случае для компенсации напряжения холодного спая применен простой и эффективный способ. Как можно ближе к разъему подключается кремневый диод. Известная зависимость тока p-n перехода от температуры позволяет сформировать компенсационное напряжение для коррекции ошибки холодного спая.

ОУ питается напряжением +12В, максимальное выходное напряжение ОУ будет составлять, за счет внутреннего падения напряжения, чуть больше 10В. Схема на ОУ представляет усилитель с ОС с коэф. усиления около 200. Резистор R6 осуществляет балансировку опорного напряжения ОУ ( установку нуля).

Точный стабилизатор напряжения REF02EZ позволяет получить из  напряжения питания стабилизированное напряжение для питания входных делителей ОУ с точностью около 1мВ.

Значения резисторов, особенно входных делителей, должны быть как можно точней соответствовать указанным на схеме.

Практическая реализация.

Всем хороша данная схема, но комплектующие не дешевы, а заявленная точность не всегда нужна в большинстве случаев. Самое распространенная задача, это измерять температуру до 400 о С с точностью +/- 1-2 оС. Под эту задачу и была разработана простая и дешевая схема.

 

 

Не используется опорный стабилизатор, Применен более дешевый и распространенный ОУ LM358. Напряжение питания 5В, поэтому максимально можно измерить реально 375 оС. Относительно большой температурный дрейф ОУ определяет ошибку измерения, не более 2 оС. Для увеличения помехоустойчивости по переменному току применен конденсатор С1. Резистором R12 можно корректировать коэф усиления в зависимости от применяемой термопары. В диапазоне до 400 оС многие типы термопар достаточно линейны, поэтому появляется возможность применения любой подходящей термопары. Хорошие результаты получаются с термопарами от цифровых мультиметров. Так как микросхема LM358 содержит два ОУ, то удобно реализовать на одной микросхеме двухканальный вариант.

Особенности при изготовлении.

Термокомпенсационный диод желательно разместить снизу печатной платы, так чтобы его корпус был как можно физически был ближе к разъему. Хорошо применить термопасту. Резисторы можно применить как SMD типа, так и обычные 0,125 Вт. Я обычно применяю последовательно соединенные резисторы стандартного ряда.

2,74К=2,7К+39

53,6=27+27

3,95К=3,9К+51

Калибровка

В домашних условиях калибровка проще всего сделать по двум точкам 0 и 100 градусов. Термопара погружается в талую воду, выставляется показания 0 градусов R6. Термопара погружается в кипящую воду, выставляется показания 100 градусов R12. Еще раз проверить 0 и 100, при необходимости подкорректировать. Можно проверить температуру тела 36,6 градусов.

Пример программной реализации.

Напряжение на выходе ОУ прямо пропорционально измеренной температуре. Если на вых. ОУ 1,00В, то это соответствует температуре 100 оС . Если на выходе 2,58В, то 258 градусам. Для измерения применен встроенный АЦП микроконтроллера фирмы МИКРОЧИП. Опорное напряжение равно напряжению питания 5,12В, при применение стабилизатора напряжения типа 7805 напряжение на его выходе обычно соответствует этому значению. АЦП 10 разрядное, 1024 уровней квантования. Один уровень квантования 0,005В. При измерении напряжения на выходе ОУ с помощью АЦП получаем следующий результат:

Пример: Uвых = 2,87В /0,005=574, уровней квантования АЦП.Для упрощения вывода результата на индикацию, необходимо полученный результат разделить на два.

574/2= 287 (0х11F) остается преобразовать полученное число в двоично-десятичный вид и вывести на применяемый индикатор.

Хочу отметить, что если необходимо измерять температуру больше 400 градусов, то напряжение питания ОУ и соответственно выходное напряжение ОУ будет больше опорного напряжения АЦП. В этом случае, как самый простой вариант, удобно использовать делитель напряжения на выходе ОУ с коэф. 2. ( два одинаковых резистора по 10 кОм). Программное деление необходимо исключить.

; RA0 - активный входной канал АЦП,

;----------------------------------------------------------------------------------------------

izm_U ;измеряем напряжение АЦП результат в ADS_L, ADS_H

;----------------------------------------------------------------------------------------------

movlw b'01000001' ; Включение АЦП; выбор аналогового канала AN0;

movwf ADCON0       ; источник Fosc/8; состояние ожидания.

movlw .6

movwf reg

decfsz reg ; задержкa

goto $-1

bsf ADCON0,2 ; Включение преобразования.

btfsc ADCON0,2 ; Ожидание окончания

goto $-1 ; преобразования.

bcf ADCON0,ADON ; Выключение модуля АЦП

;-------------------------------------------------------------------------------------------------------

movf ADRESH,w ; перепишем результат преобразования

movwf ADS_H

bsf STATUS,RP0

movf ADRESL,w

clrf STATUS

movwf ADS_L

;---------------------------------------------------------------------------------------------------------

rrf ADS_H ; результат делим на 2

rrf ADS_L

;---------------------------------------------------------------------------------------------------------

call bin2_10 ; преобразование двоичного числа в двоично-десятичное

call IND ; вывод на индикацию

подпрограммы bin2_10 и IND, не привожу, т.к. каждый применяет свой удобный вариант для применяемого индикатора.

Заключение.

Данная схема прекрасно измеряет и более высокие температуры до 1000 градусов. Единственно, надо знать тип термопары. Распространенные советские термопары хромель-копель измеряют до 800 градусов и немного нелинейны с 300 - 600 градусов. Если применить термопары К-типа, то результаты хорошие до 1000 градусов, с точностью +\- 2 градуса.  Так же нужно повысить напряжение питания ОУ  и применить делитель напряжения на вых ОУ.

Случайные статьи....

Prev Next

Программирование c нуля в AVRStudio 5 (ч.5)

14-03-2012 Радик

Программирование c нуля в AVRStudio 5 (ч.5)

 Сегодня рассмотрим программу “бегущих огней” и “бегущих теней”. Примеры “бегущих огней” можно найти почти в любой обучающей литературе. Чтобы получить “бегущие огни” на выходах порта, нужно последовательно переключать один бит.      “Бегущая тень” получается при инверсии “бегущих огней”. В принципе...

Любителям часов и счета.

27-06-2011 Александр Милевский

Любителям часов и счета.

Хочу поделиться несколько методами, которые удобно использовать при разработке различных устройств, отсчитывающих точные временные интервалы и производящие их счет и счет различных событий. Основная информация взята с сайтов piclict.com и piclict.ru. 1. Метод позволяющий получить точные временные интервалы. Простая и быстрая система...

Универсальный цифровой спидометр

09-03-2011 wws63

Универсальный цифровой спидометр

  Предлагаемый ниже автомобильный цифровой спидометр предназначен для установки в автомобили со штатными аналоговыми спидометрами, управляемые электрическими импульсами, поступающими от установленных датчиков скорости. Также возможно использование такого устройства в случае самостоятельной установки на автомобиль  подобных датчиков.    

Быстрая настройка MPLAB IDE

24-04-2012 Super User

MPLAB IDE, как и упоминалось выше - это пакет программ, включающий в себя , редактор текстов,  симулятор, ассемблер и многое другое. В конечном итоге программист получит на "выходе" файл с расширением "HEX".  В этой главе мы кратко рассмотрим быструю настройку...


Все права принадлежат ChipMK.ru. При копировании материала ссылка обязательна. 2011-2017 © ChipMK.ru

ChipMk.ru Яндекс.Метрика
PRCY.ru